

django-user-payments

Version 0.3.3

Create, track and settle payments by users.

django-user-payments consists of a few modules which help with managing
payments and subscriptions by users on a Django-based site.

Table of Contents

	Prerequisites and installation

	Payments
	A payment life cycle

	Undoing payments

	Subscriptions
	Periods and periodicity

	Subscription status and grace periods

	Periodical tasks and maintenance

	Closing notes

	Stripe customers
	The moocher

	Processing
	Writing your processors

	Processing individual payments

	Bulk processing

	Management command

	Change log
	Next version

	0.3 (2018-09-21)

	0.2 (2018-08-05)

	0.1 (2018-06-05)

Prerequisites and installation

The prerequisites for django-user-payments are:

	Django 2.2 or better

	Python 3.5 or better

	django-mooch [https://github.com/matthiask/django-mooch]
(installed as a dependency)

To install the package, start with installing the package using pip:

pip install django-user-payments

Add the apps to INSTALLED_APPS and override settings if you want to
change the defaults:

INSTALLED_APPS = [
 ...

 # Required:
 "user_payments",

 # Optional, if you want those features:
 # "user_payments.user_subscriptions",
 # "user_payments.stripe_customers",

 ...
]

Also optional, defaults:
from datetime import timedelta # noqa

USER_PAYMENTS = {
 "currency": "CHF",
 "grace_period": timedelta(days=7),
 "disable_autorenewal_after": timedelta(days=15),
}

Payments

django-user-payments allows quickly adding line items for a user and
paying later for those.

For example, if some functionality is really expensive you might want to
add a line item each time the user requests the functionality:

@login_required
def expensive_view(request):
 LineItem.objects.create(
 user=request.user,
 amount=Decimal("0.05"),
 title="expensive view at %s" % timezone.now(),
)

 # .. further processing and response generation

At the time the user wants to pay the costs that have run up you create
a pending payment and maybe process it using a moocher.

A quick introduction to moochers

Moochers (provided by django-mooch [https://github.com/matthiask/django-mooch]) take a request and a
payment instance, show a form or a button, and handle interaction
with and responses from payment service providers. They allow
processing individual payments one at a time.

django-user-payments’ Payment model extends the abstract
mooch.Payment so that moochers may be readily used.

The first view below, pay creates the pending payment and redirects
the user to the next step. pay_payment fetches the pending payment
from the database and allows selecting a payment method. Further
processing is the responsibility of the selected moocher.

@login_required
def pay(request):
 payment = Payment.objects.create_pending(user=request.user)
 if not payment:
 # No line items, redirect somewhere else!
 return ...

 # django-mooch's Payment uses UUID4 fields:
 return redirect('pay_payment', id=payment.id.hex)

@login_required
def pay_payment(request, id):
 payment = get_object_or_404(
 request.user.user_payments.pending(),
 id=id,
)
 return render(request, "pay_payment.html", {
 "payment": payment,
 "moochers": [
 moocher.payment_form(request, payment)
 for moocher in moochers.values()
],
 })

A payment life cycle

Payments will most often be created by calling
Payment.objects.create_pending(user=<user>). This creates an unpaid
payment instance and binds all unbound line items to the payment
instance by updating their payment foreign key field. The amount
fields of all line items are summed up and assigned to the payments’
amount field. If there were no unbound line items, no payment
instance is created and the manager method returns None.

Next, the instance is hopefully processed by a moocher or
django-user-payment’s processing which will be discussed later. A
paid-for payment has its nullable charged_at field (among some other
fields) set to the date and time of payment.

If payment or processing failed for some reason, the payment instance is
in most cases not very useful anymore. Deleting the instance directly
fails because the line items’ payment foreign key protects against
cascading deletion. Instead, payment.cancel_pending() unbinds the
line items from the payment and deletes the payment instance.

Undoing payments

In rare cases it may even be necessary to undo a payment which has
already been marked as paid, respectively has its charged_at field
set to a truthy value. In this case, the payment.undo() method sets
charged_at back to None and unbinds all the payments’ line
items.

Subscriptions

Active subscriptions periodically create periods, which in turn create
line items.

Creating a subscription for an user looks like this:

subscription = Subscription.objects.ensure(
 user=request.user,
 code="the-membership",
 periodicity="monthly",
 amount=Decimal("12"),

 # Optional:
 title="The Membership",
)

This example would also work with Subscription.objects.create(), but
Subscription.objects.ensure() knows to update a users’ subscription
with the same code and also is smart when a subscription is updated
– it does not only set fields, but also remove now invalid periods and
delay the new start date if the subscription is still paid for.

django-user-payments’ subscriptions have no concept of a plan or a
product – this is purely your responsibility to add (if needed).

Periods and periodicity

Next, let’s add some periods and create some line items for them:

for period in subscription.create_periods():
 period.create_line_item()

Subscriptions are anchored on the starts_on day. Available
periodicities are:

	yearly

	monthly

	weekly

	manually

Simply incrementing the month and year will not always work in the case
of yearly and monthly periodicity. If the naively calculated
date does not exist, the algorithm returns later dates.

Specifics of recurring date calculation

For example, if a subscription starts on 2016-02-29 (a leap year),
the next three years’ periods will start on March 1st. However, the
period stays anchored at the start date, therefore in 2020 the period
starts on February 29th again. Same with months: The next two period
starts for a monthly subscription starting on 2018-03-31 will be
2018-05-01 and 2018-05-31. As you can see, since 2018-04-31 does not
exist, no period starts in April, and two periods start in May.

Periods end one day before the next period starts. Respectively,
subscriptions do not only offer date fields – all date fields have a
corresponding property returning a date time in the default timezone.
Periods always start at 00:00:00 and end at 23:59:59.999999.

subscription.create_periods() only creates periods that start no
later than today. This can be overridden by passing a date using the
until keyword argument.

Subscription status and grace periods

Once line items created by subscription periods are bound to a payment
and the payment is paid for, the subscription automatically runs its
update_paid_until() method. The method sets the subscriptions’
paid_until date field to the date when the latest subscription
period ends.

However, the subscription status is not only determined by
paid_until. By default, subscriptions have a grace period of 7 days
during which the subscription is still subscription.is_active, but
also subscription.in_grace_period. The date time when the grace
period ends is available as subscription.grace_period_ends_at.

Take note that the grace period also applies to subscriptions that have
been newly created, that is, never been paid for.

Subscriptions should be canceled by calling subscription.cancel().
This method disabled automatic renewal and removes periods and their
line items in case they haven’t been paid for yet.

Periodical tasks and maintenance

The following commands would make sense to run periodically in a
management command:

	Subscription.objects.disable_autorenewal(): Cancel subscriptions
that are past due by disable_autorenewal_after days, by default 15
days.

	Subscription.objects.create_periods(): Run
subscription.create_periods() on all subscriptions that should
renew automatically.

	SubscriptionPeriod.objects.create_line_items(): Make periods
create their line items in case they haven’t done so already. By
default only periods that start no later than today are considered.
This can be changed by providing another date using the until
keyword argument.

The processing documentation contains a management command where those
functions are called in the recommended way and order.

Closing notes

As you can see subscriptions do not concern themselves with payment
processing, only with creating line items. Subscriptions only use
payments to automatically update their paid_until date field.

Stripe customers

The Stripe customers module offers a moocher which automatically creates
a Stripe customer [https://stripe.com/docs/api/python#customers], a
model which binds Stripe customers to user instances and a processor for
payments.

Note

Stripe supports more than one source (that is, credit card) per
customer, but our user_payments.stripe_customers module does not.

The Stripe customers app requires STRIPE_PUBLISHABLE_KEY and
STRIPE_SECRET_KEY settings.

The moocher

The user_payments.stripe_customers.moochers.StripeMoocher is
basically a drop-in replacement for django-mooch’s
mooch.stripe.StripeMoocher, except that:

	Instead of only charging the user once, our moocher creates a Stripe
customer and binds it to a local Django user (in case the user is
authenticated) to make future payments less cumbersome.

	If an authenticated user already has a Stripe customer, the moocher
only shows basic credit card information (e.g. the brand and expiry
date) and a “Pay” button instead of requiring entry of all numbers
again.

Processing

django-user-payments comes with a framework for processing payments
outside moochers.

The general structure of an individual processor is as follows:

from user_payments.processing import Result

def psp_process(payment):
 # Check prerequisites
 if not <prerequisites>:
 return Result.FAILURE

 # Try settling the payment
 if <success>:
 return Result.SUCCESS

 return Result.FAILURE

The processor must return a Result enum value. Individual
processor results must not be evaluated in a boolean context.

The following Result values exist:

	Result.SUCCESS: Payment was successfully charged for.

	Result.FAILURE: This processor failed, try the next.

	Result.TERMINATE: Terminate processing for this payment, do not
run any further processors.

When using process_payment() as you should (see below) and an
individual processor raises exceptions the exception is logged, the
payment is canceled if cancel_on_failure is True (the default)
and the exception is reraised. In other words: Processors should not
raise exceptions.

Writing your processors

django-user-payments does not bundle any processors, but makes it
relatively straightforward to write your own.

The Stripe customers processor

This processors’ prerequisites are a Stripe customer instance. If the
prerequisites are fulfilled, this processor tries charging the user, and
if this fails, sends an error mail to the user and terminates further
processing:

import json
import logging

from django.apps import apps
from django.core.mail import EmailMessage
from django.db.models import ObjectDoesNotExist
from django.utils import timezone

import stripe

from user_payments.processing import Result

logger = logging.getLogger(__name__)

def with_stripe_customer(payment):
 try:
 customer = payment.user.stripe_customer
 except ObjectDoesNotExist:
 return Result.FAILURE

 s = apps.get_app_config("user_payments").settings
 try:
 charge = stripe.Charge.create(
 customer=customer.customer_id,
 amount=payment.amount_cents,
 currency=s.currency,
 description=payment.description,
 idempotency_key="charge-%s-%s" % (payment.id.hex, payment.amount_cents),
)

 except stripe.error.CardError as exc:
 logger.exception("Failure charging the customers' card")
 EmailMessage(str(payment), str(exc), to=[payment.email]).send(
 fail_silently=True
)
 return Result.TERMINATE

 else:
 payment.payment_service_provider = "stripe"
 payment.charged_at = timezone.now()
 payment.transaction = json.dumps(charge)
 payment.save()

 return Result.SUCCESS

A processor which sends a “Please pay” mail

This processor always fails, but sends a mail to the user first that
they should please pay soon-ish:

from django.core.mail import EmailMessage

from user_payments.processing import Result

def please_pay_mail(payment):
 # Each time? Each time!
 EmailMessage(str(payment), "<No body>", to=[payment.email]).send(fail_silently=True)
 return Result.FAILURE

Since this processor runs its action before returning a failure state,
it only makes sense to run this one last.

Processing individual payments

The work horse of processing is the
user_payments.processing.process_payment function. The function
expects a payment instance and a list of processors and returns True
if one of the individual processors returned a Result.SUCCESS state.

If all processors fail the payment is automatically canceled and the
payments’ line items returned to the pool of unbound line items. This
can be changed by passing cancel_on_failure=False in case this
behavior is undesirable.

Bulk processing

The user_payments.processing module offers the following functions
to bulk process payments:

	process_unbound_items(processors=[...]): Creates pending payments
for all users with unbound line items and calls process_payment on
them. Cancels payments if no processor succeeds.

	process_pending_payments(processors=[...]): Runs all unpaid
payments through process_payment, but does not cancel a payment
upon failure. When you’re only using processors and no moochers this
function should have nothing to do since process_unbound_items
always cleans up on failure. Still, it’s better to be safe than sorry
and run this function too.

Management command

My recommendation is to write a management command that is run daily and
which processes unbound line items and unpaid payments. An example
management command follows:

from django.core.management.base import BaseCommand

from user_payments.processing import process_unbound_items, process_pending_payments
Remove this line if you're not using subscriptions:
from user_payments.user_subscriptions.models import Subscription, SubscriptionPeriod

Import the processors defined above
from yourapp.processing import with_stripe_customer, please_pay_mail

processors = [with_stripe_customer, please_pay_mail]

class Command(BaseCommand):
 help = "Create pending payments from line items and try settling them"

 def handle(self, **options):
 # Remove those three lines if you're not using subscriptions:
 Subscription.objects.disable_autorenewal()
 Subscription.objects.create_periods()
 SubscriptionPeriod.objects.create_line_items()

 # Process payments
 process_unbound_items(processors=processors)
 process_pending_payments(processors=processors)

If you’re using Sentry [https://sentry.io/welcome/] you probably want
to wrap all commands in a try..except block:

...

from raven.contrib.django.raven_compat.models import client

class Command(BaseCommand):
 ...

 def handle(self, **options):
 try:
 ...
 except Exception:
 client.captureException()
 raise # Reraise, for good measure

Change log

Next version [https://github.com/matthiask/django-user-payments/compare/0.3...master]

	Ensured that the username is part of search_fields for all models
registered with the admin interface.

	Added a new subscription periodicity, quarterly.

	Added a SubscriptionPeriod.objects.zeroize_pending_periods()
helper for zeroizing past periods so that when users (finally) provide
payment methods they do not have to pay past periods too (if you
choose so).

0.3 [https://github.com/matthiask/django-user-payments/compare/0.2...0.3] (2018-09-21)

	Fixed the case where two consecutive Subscription.objects.ensure()
calls would lead to the subscription being restarted and a second
period being added right away. Also, fix a bunch of other edge cases
in ensure() and add a few additional tests while at it.

	Made it impossible to inadvertently delete subscription periods by
cascading deletions when removing line items.

	Changed the subscription admin to only show the period inline when
updating a subscription.

	Added Payment.undo() to undo payments which have already been
marked as paid.

	Fixed an edge case where setting Subscription.paid_until would
produce incorrect results when no period was paid for yet.

0.2 [https://github.com/matthiask/django-user-payments/compare/0.1...0.2] (2018-08-05)

	Changed SubscriptionPeriod.objects.create_line_items() to only
create line items for periods that start no later than today by
default. A new until keyword argument allows overriding this.

	Fixed MANIFEST.in to include package data of stripe_customers.

	Changed the code for the updated Stripe Python library. Updated the
requirement for django-user-payments[stripe] to >=2.

	Fixed a crash when creating a subscription with a periodicity of
“manually” through the admin interface.

0.1 [https://github.com/matthiask/django-user-payments/commit/c6dc9474] (2018-06-05)

	First release that should be fit for public consumption.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 django-user-payments

 		
 Prerequisites and installation

 		
 Payments

 		
 A payment life cycle

 		
 Undoing payments

 		
 Subscriptions

 		
 Periods and periodicity

 		
 Subscription status and grace periods

 		
 Periodical tasks and maintenance

 		
 Closing notes

 		
 Stripe customers

 		
 The moocher

 		
 Processing

 		
 Writing your processors

 		
 The Stripe customers processor

 		
 A processor which sends a “Please pay” mail

 		
 Processing individual payments

 		
 Bulk processing

 		
 Management command

 		
 Change log

 		
 Next version

 		
 0.3 (2018-09-21)

 		
 0.2 (2018-08-05)

 		
 0.1 (2018-06-05)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

